Multitask painting categorization by deep multibranch neural network
نویسندگان
چکیده
منابع مشابه
Art Painting Identification using Convolutional Neural Network
Convolutional Neural Network (CNN) applications have been suggested for many multimedia processing tasks and achieved great success. In this paper, we present a methodology about how to apply CNN for art painting identification. Each art painting image is distorted by various operations, such as lens distortion, scaling, rotation, etc., to simulate potential situation that it would be appeared ...
متن کاملQuantitative Toxicity Prediction Using Topology Based Multitask Deep Neural Networks.
The understanding of toxicity is of paramount importance to human health and environmental protection. Quantitative toxicity analysis has become a new standard in the field. This work introduces element specific persistent homology (ESPH), an algebraic topology approach, for quantitative toxicity prediction. ESPH retains crucial chemical information during the topological abstraction of geometr...
متن کاملMultitask Learning with Deep Neural Networks for Community Question Answering
In this paper, we developed a deep neural network (DNN) that learns to solve simultaneously the three tasks of the cQA challenge proposed by the SemEval-2016 Task 3, i.e., question-comment similarity, question-question similarity and new question-comment similarity. The latter is the main task, which can exploit the previous two for achieving better results. Our DNN is trained jointly on all th...
متن کاملFlower Categorization using Deep Convolutional Neural Networks
We have developed a deep learning network for classification of different flowers. For this, we have used Visual Geometry Group’s 102 category flower data-set having 8189 images of 102 categories from Oxford University. The method is basically divided in two parts i.e. Image segmentation and classification. We have compared two different Convolutional Neural Network architectures GoogLeNet and ...
متن کاملModeling Reactivity to Biological Macromolecules with a Deep Multitask Network
Most small-molecule drug candidates fail before entering the market, frequently because of unexpected toxicity. Often, toxicity is detected only late in drug development, because many types of toxicities, especially idiosyncratic adverse drug reactions (IADRs), are particularly hard to predict and detect. Moreover, drug-induced liver injury (DILI) is the most frequent reason drugs are withdrawn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Expert Systems with Applications
سال: 2019
ISSN: 0957-4174
DOI: 10.1016/j.eswa.2019.05.036